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Hierarchical Hybrid Memory Management in 
OS for Tiered Memory Systems 

Lei Liu, Shengjie Yang, Lu Peng, and Xinyu Li 

Abstract—The emerging hybrid DRAM-NVM architecture is challenging the existing memory management mechanism at the 

level of the architecture and operating system. In this paper, we introduce Memos, a memory management framework which 

can hierarchically schedule memory resources over the entire memory hierarchy including cache, channels, and main memory 

comprising DRAM and NVM simultaneously. Powered by our newly designed kernel-level monitoring module that samples the 

memory patterns by combining TLB monitoring with page walks, and page migration engine, Memos can dynamically optimize 

the data placement in the memory hierarchy in response to the memory access pattern, current resource utilization, and 

memory medium features. Our experimental results show that Memos can achieve high memory utilization, improving system 

throughput by around 20.0%; reduce the memory energy consumption by up to 82.5%; and improve the NVM lifetime by up to 

34X. 
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1 INTRODUCTION

n  the era of big data and cloud computing, applications 
have rapidly increasing memory footprints, energy con-

sumption, and demand for throughput. To satisfy these 
requirements, it is critical to increase the memory capaci-
ty, reduce the memory access latency, and improve 
memory energy efficiency. Emerging Non-Volatile 
Memory (NVM) technologies (e.g., Intel/Micron’s 3D 
XPoint promises 6TB of storage in a dual-socket server 
[22,23]) provide higher density and lower energy costs 
but suffer from relatively long write latency compared to 
DRAM. Thus, future systems will likely use hybrid 
DRAM-NVM systems [25,32,34,46], i.e., tiered memory 
systems, to take advantage of both the fast access speed of 
DRAM and the ultra-low idle-power, high density, as 
well as the non-volatility offered by NVM.  

Conventionally, there are two different ways of organ-
izing hybrid DRAM-NVM (Fast-Slow) main memory sys-
tems. The first option is to place different memories “ver-
tically”, i.e., using the faster DRAM as a cache (buffer) of 
the NVM. In this scheme, data movement between NVM 
and DRAM is controlled by dedicated hardware logic, 
which is transparent to Operating System (OS) and user 
applications [34,63,65]. Alternatively, DRAM and NVM 
can reside “horizontally” at the same level in the memory 
hierarchy [34,63,71], where software manages data 
placement and page migration. Compared to the first ap-
proach, the horizontal architecture presents more oppor-
tunities and challenges to OS designers [57,62,81,83]. 

The challenges in designing OS for a hybrid memory 
system lie in identifying performance-critical data that 
should be placed in the fast memory, and maximizing the 
utilization of the fast memory (DRAM), which is with 
limited capacity [44] and low utilization (as low as 31% in 
Google Data Centers [45]). Many studies have discussed 
this topic. In contrast, our work is based on the following 
key insights: 
(1) While the previous approaches [53,87] can identify the 
memory access patterns, e.g., hot/cold memory pag-
es/regions, for desktop-level applications by PTE (Page 
Table Entry) sampling, they are ineffective in the envi-
ronments with the workloads such as Redis and Mem-
cached, which have large memory footprints and diverse 
patterns of memory access (e.g., the hot regions with di-
verse write/read patterns may be randomly distributed in 
the large address space). Scanning the entire address 
space periodically for them to figure out the memory pat-
terns can incur significant overheads. And, doing in this 
way is often insensitive to the memory pattern changes. 
Thus, it is necessary to combine event sampling and page-
table walks to achieve both high accuracy and low over-
head for monitoring the workloads with large and diverse 
memory footprints.  
(2) Although NVM has a larger capacity compared to 
DRAM, it is hard to be fully exploited when added into 
the existing memory hierarchy. In order to maximize 
NVM/DRAM utilization, it is essential to consider cache 
activities at multiple hierarchical levels when placing 
memory pages; existing memory-hierarchy-blind ap-
proaches are sub-optimal [51,52]. 
(3) Page migration impacts the overall system perfor-
mance, especially for the cloud computing systems with 
hybrid memories, where a large amount of data are fre-
quently moved across memories due to memory pattern 
changes. We find the core reasons for the high overhead 
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are multi-fold: a) to ensure the consistency for migrated 
pages, the OS locks them during the migration; as a re-
sult, these pages cannot be accessed during this period, 
hurting performance; b) updating PTEs/mappings for the 
migrated pages can result in expensive context switches 
and TLB shootdown [28]; and c) current methods often 
use improper migration mechanisms for pages with dif-
ferent memory patterns. For example, an expensive CPU 
memory copy is inappropriate for cold data evicted from 
fast memory (DRAM), which is unlikely to be reused in 
the near future. Hence, we believe the data migration 
mechanism between DRAM and NVM should combine 
DMA and CPU-based approaches for the best efficiency 
depending on the memory access pattern, and this mech-
anism should also avoid the unnecessary lock usage and 
unnecessary migrations. 

With these considerations, we introduce Memos, a 
memory management framework in the OS for horizon-
tally integrated DRAM and NVM (i.e., Multi-Channel 
Horizontal Architecture (MCHA), where memory chan-
nels connect different types of memory). The critical de-
sign ideas and contributions of this paper are listed as 
follows: 
(1) We design the first full hierarchy memory manage-
ment framework in the OS, to hierarchically schedule 
cache, channels, and DRAM/NVM banks simultaneously. 
Our framework not only efficiently discerns and migrates 
hot pages to fast memory (DRAM) but also schedules the 
hotness according to the cache and bank associated map-
ping scheme, leaving the NVM cool while maximizing the 
utilization of the DRAM as well as the entire memory 
hierarchy. (Sec.4) 
(2) We propose a Hybrid Memory Monitoring mecha-
nism (HyMM), an OS kernel-level online memory-
profiling module. HyMM has three new features: 1) by 
extensively studying several memory traces, we find the 
most effective history window size for predicting the fu-
ture page-level memory access patterns. Leveraging this 
knowledge, HyMM can effectively predict the future 
memory patterns. 2) We discover that, within a specific 
address range (i.e., a sub-memory region in the address 
space), memory pages exhibit similar write/read memory 
patterns. Thus, HyMM can use only one page as a sample 
representing the corresponding sub-region, and thus sub-
stantially reduce the sampling overhead. 3) HyMM is the 
first approach to combine TLB miss rate sampling along 
with access/dirty_bit sampling while adapting to different 
types of memory. In practice, HyMM obtains the page 
hotness, write/read patterns and the stream-like uses for 
applications with large memory footprint with lower 
overhead. (Sec.3) 
(3) We devise a cost-effective hybrid data migration en-
gine, which combines DMA and CPU-based page migra-
tion approaches, and allows for dynamically switching to 
the most appropriate mode. Specifically, we optimize the 
DMA with lock-less migration, more efficient memory 
page migration, and by saving CPU time for migration. 
(Sec.5) 
(4) We design a two-tiered Buddy System in the OS ker-
nel to support Memos allocating a specific page that cor-

responds to any cache slab, channel, DRAM/NVM banks 
in constant time. By modifying the Buddy System, DMA 
engine, and performance-monitoring module, we imple-
ment Memos in the Linux kernel. Moreover, we design an 
emulation platform for hybrid DRAM-NVM on a real 
machine with all DRAM DIMMs by using the channel-
partitioning approach. (Sec.5) 

We test Memos by employing Memcached [4], Redis 
[9], Aerospike [14], MySQLslap [16], and the benchmarks 
in SPECCPU 2006 [6]. The experimental results show that, 
on average, Memos on MCHA can improve memory uti-
lization by 27.4~69.9%, and improve throughput by 
around 20.0% on average compared to previous ap-
proaches. Moreover, Memos can reduce memory energy 
consumption by up to 82.5%, and greatly improve the 
NVM lifetime.  

2 BACKGROUND AND CHALLENGES 

2.1 NVM is coming! 

Driven by the growing demands for closing the gap be-
tween CPU and memory/storage, several NVM technolo-
gies emerge as DRAM alternatives (e.g., Phase Change 
based RAM [69,72,65]). These technologies offer the po-
tential of building a low-cost hybrid main memory sys-
tem that has a larger capacity, lower power consumption 
and operates at near-DRAM speed. Although these NVM 
technologies provide unprecedented options and 
tradeoffs, they do not aim to completely replace DRAM in 
the near future due to its longer write operation latency, 
higher dynamic energy consumption and even limited 
endurance. For example, PCM is expected to have 2X 
higher read latency, up to 5X write latency and 5X~10X 
lower bandwidth than DRAM [44,49,65,68,71]. Now, it is 
common wisdom to integrate NVM with DRAM to form 
a hybrid/tiered memory system (DRAM-NVM) to miti-
gate NVM’s downsides while leveraging its low leakage 
and high-density benefits [34,65,78,83]. Yet, previous 
work still has room for improvement from the angle of 
OS. To achieve a desirable performance on hybrid 
memory systems, it would be ideal that the memory 
management mechanism in OS kernel could be aware of 
architecture features, memory characteristics and applica-
tions’ memory access behaviors, and then guide and op-
timize the data mapping across entire memory hierarchy. 

2.2 Data Replacement at Memory Hierarchy 

2.2.1 Memory Bank Utilization 

The main memory bank system is often the bottleneck of 
the overall throughput [65]. To improve bank-level paral-
lelism, while conventional approaches use physical ad-
dress interleaving [52,53] or an XOR scheme [84] to dis-
tribute physical pages across different banks as evenly as 
possible, they fail to consider the online memory behav-
iors. As a result, the hot (active) pages, which receive 
more memory accesses and have a higher impact on per-
formance at runtime, are often distributed unevenly 
across banks. We evaluate the number of hot pages 
mapped to each bank, and compare the hot pages number 
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Fig.1. Cache and Memory bank associated address mapping. 

of every bank with that of the coldest bank (i.e., the one 
with the least hot pages), to represent the hot page map-
ping imbalance across banks1. On average, for applica-
tions in SPECCPU 2006, the bank imbalance is 28.2%. 
GemsFDTD, as an example, exhibits a high bank imbal-
ance, up to 52.5%, indicating some banks have significant-
ly more hot pages than others. Things got even worse in 
some cloud cases. For example, we test Memcached and 
show its average bank imbalance is 66.0% at runtime. Our 
views indicate there are hot banks that suffer severe bank 
conflicts, harming the row-buffer locality, and we believe 
this brings significant performance loss in the context of 
long-running cloud computing environments. 

Using NVM (e.g., PCM [44]), the bank imbalance can 
lead to more severe performance loss than on DRAM, as 
each bank conflict will bring additional cost than on 
DRAM, especially for cases with lots of write operations 
[44,65,69]. By rebalancing bank accesses via data migra-
tion, underutilized memory banks can share the respon-
sibilities of these “hot” ones, and therefore the bank-level 
interferences can be greatly reduced. Reducing one con-
flict on an NVM bank can has an up to ~10X greater im-
pact on performance than reducing the same conflict on 
DRAM. Moreover, as NVM system often has more 
memory banks than DRAM system, rebalancing NVM 
bank accesses can help to distribute these memory access-
es across more banks, improving the overall bank-level 
parallelism and bandwidth. 

2.2.2 Cache and Bank Associated Data Mapping 

Bank-level balancing alone is not sufficient; in many cas-
es, although memory accesses are nearly balanced across 
banks, the cache utilization is still very low. We further 
study the cache-bank associated address mapping in 
modern architecture [52,53,65] and find that there are 
some overlapped bits that index both of the row address 
in banks and the cache sets. Thus, “blindly” balancing 
bank utilization without taking into account the data 
block’s corresponding cache address (i.e., row address in 
a specific memory bank) will lead to cache conflicts. We 
show a typical example in Fig.1. Suppose there are two 
groups of pages (part of the row bits are 0010) residing in 
two banks: Bank 0 and Bank 1. Their data blocks will be 
mapped into the same cache set, denoted as 0010, which 
may cause cache conflicts. If we map a group of pages fr-
om one bank into a different row, denoted as 1011 in 
Bank1, the cache conflicts  will  be  eliminated,  while  still  
 
1 The memory system is with 64 128MB DRAM banks. And, the memory 

controller is with the widely used page-level interleaving scheme [51,65]. 
We have the similar stories on platforms used i7/i3/Xeon E5 series CPU 
with the XOR (Sandy/Ivy Bridge) and page-interleaving scheme. 

maintaining bank balance. 
This motivates us, to pursuit higher memory utiliza-

tion, it is essential to consider cache activities hierarchical-
ly in tandem with bank allocation and mapping. For 
NVM, this consideration is especially meaningful, as 
cache misses to NVM have a higher cost than those for 
read. Therefore, (1) we should try to reduce the number 
of memory accesses that go to NVM by reducing the 
cache conflicts; (2) even on a specific NVM bank, we 
should map data blocks onto carefully selected rows to 
avoid cache conflicts, as some of the row bits also index 
the cache sets. 

2.2.3 Memory Channel Effects 

In a system using hybrid DRAM-NVM (e.g., MCHA), 
channel scheduling is crucial, as multiple channels con-
nect different types of memory and provide different 
bandwidths. Mapping data that performs better on ap-
propriate memory types will benefit the overall system 
performance. For example, if stream-like pages are 
mapped on an NVM channel, they will definitely con-
sume the limited NVM bandwidth, leading to poor over-
all bandwidth utilization and performance. Since the limi-
tation is the available bandwidth (NVM’s bandwidth is 
naturally lower than DRAM), we should have a new 
bandwidth scheduling policy for hybrid memory system. 
Furthermore, due to the longer latency and endurance for 
write operations on NVM, mapping data that is frequent-
ly rewritten into an NVM channel is not a good choice.  

3 HyMM: Monitoring Memory Accesses Pat-
terns on Hybrid Memory System 

The primary purpose of our design is to keep the hot data 
especially for those with write-intensive access patterns 
within DRAM. The major challenges are identifying them 
with a low overhead, and then moving hot data between 
memories. This section highlights our design, i.e., HyMM, 
which is used for identifying the memory access patterns 
for workloads with high memory footprints. 

3.1 Overview of HyMM 

Previous studies [53,54,87] clear and check (i.e., sampling) 
the page access_bit in a PTE during continuous sampling 
passes to determine page hotness. HyMM (Hybrid 
Memory Monitor) employs this approach. Furthermore, 
to capture write and read patterns, HyMM monitors the 
dirty_bit (also in PTE) to capture page-level write/read 
behaviors. For a hot page, a dirty_bit of 0 indicates the 
page is being used for reading and 1 indicates that this 
page has been modified. HyMM monitors not just the 
access type but also the location of the access pages. By 
examining the values of the bank index bits in PFN (Page 
Frame No.) [51,52] and counting the hot pages assigned to 
each memory bank, HyMM can obtain the bank balance 
information. We carefully designed the core data struc-
ture for HyMM and use a page shadow array (each ele-
ment is a raw byte) and bit manipulation to track the 
memory access patterns. For applications with a relatively 
small memory footprint  (e.g.,  benchmarks  in  SPECCPU  
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Fig.2. The number of TLB miss in two cloud applications’ relative 
virtual address space with a snapshot. Hot regions are those with 
relative more TLB misses. 

2006 that use below 1GB memory), sampling all pages in 
their memory space by monitoring the access_bit to dis-
cern the page-level memory patterns is practical 
[22,53,87]. However, for cloud applications, workloads 
often have a much larger memory footprint, thus sam-
pling the entire memory address space to obtain the 
memory features (e.g., access frequency, hotness ranking) 
is not quite cost-effective and often leads to inaccurate 
sampling results [26]. The approach used in HyMM is 
described in Sec. 3.2. 

3.2 Sampling Hot/Cold Regions 

HyMM monitors the number of TLB misses instead of the 
access_bit to find Hot/Cold regions. HyMM is an OS mod-
ule enhanced from [37] (the prior work can merely get the 
overall number of TLB misses for a specific app). Adding 
a shadow array in VMA, HyMM can get TLB misses for 
each page. Generally, cold pages that are rarely accessed 
have only a small number of TLB misses, while hot pages 
usually incur a large number of TLB misses, if they are 
frequently touched. In a program with a large working 
set, hot pages will be swapped in/out of the TLB repeat-
edly. By monitoring the number of TLB misses, we can 
obtain the distribution of TLB misses for the entire 
memory region and further divide the memory address 
space into many regions based on hot or cold patterns. 

Pages that are “very hot” might be kept in the TLB and 
thus cause fewer TLB misses than cold pages do. We want 
to find out how many pages are in this category. In our 
experiments, the pages whose TLB miss count is below 10 
in the sampling period (5s) are classified as cold pages2, 
and we further check their access_bit to discern whether 
they are hot pages or not. Here “hot” refers to pages that 
are touched in 3 consecutive scan intervals (2s). The ex-
periment reveals that this special category of pages can be 
ignored for two reasons. Firstly, the proportion of such 
special pages is quite small. Taking Memcached as an 
example, only 0.18% of the pages on average is actually 
hot, but is misclassified as cold. Secondly, the active con-
tent of these pages will likely reside in LLC for a long 
time without accesses to main memory. 

We illustrate Memcached and Aerospike in Fig.2 to 
show the effectiveness of our approach. The memory 
pages in a range of specific memory addresses that exhib-
it high TLB misses are considered as hot pages. HyMM 
classifies pages with more TLB misses as hot. HyMM can 
find out the hot regions for these 2 cloud applications in 
their memory address spaces. Note that hot and cold 
pages are relative, because we want to select relatively hot 

 
Fig.3. History window and prediction effectiveness. This figure sum-
marizes extensive and diverse cases from all of the SPECCPU 2006 
apps and cloud workloads averaged together. 

pages for migrations (details are in section 4). 

3.3 Monitoring Write/Read Patterns 

In the next step, we will analyze the pages in the hot re-
gion and examine their write and read patterns by exam-
ining the dirty_bit in their PTEs. Previous studies 
[26,35,58] show designs that predict future memory ac-
cess patterns using recently monitored memory page-
level access patterns. We are challenged by two questions: 
1) how much history information should be used to cap-
ture valid memory patterns? And, 2) how long can will 
the memory patterns continue in the coming future? In 
order to address these questions, we analyze a large 
number of memory traces with records of write (i.e., 
dirty_bit=1) and read (i.e., dirty_bit=0) patterns (the sam-
pling interval is 2s) from SPEC and cloud workloads, e.g., 
Memcached, Aerospike and etc., to reveal the predictive 
power of the latest history pattern records for finding the 
future duration of the current state, and the prediction 
accuracy for different history lengths. We denote the 
length of the history as window_len (each window has 
window_len total write/read records). A page is consid-
ered Write-Domain (WD) when at least half of the entries 
in the history window have non-zero dirty bits, otherwise 
it is Read-Domain (RD). As shown in Fig.3, in the case 
where the window_len is 8 (i.e., only the latest 8 consecu-
tive history records are used in prediction), we can pre-
dict the memory access pattern with 96% accuracy on 
average. A short history (e.g., window_len is 4/6/7) does 
not have enough information to achieve an accurate pre-
diction (with an accuracy below than 95%); on the other 
hand, an over-length history larger than 8 brings more 
noise data, thus hurting the prediction accuracy and in-
creasing the sampling overheads. Therefore, we predict 
the future memory pattern using a history of length 8. 
According to the statistics shown in Fig.3, a memory pat-
tern predicated using a history trace is expected to keep 
stable for 10 sampling intervals 95% of the time which is 
considered sufficiently long to avoid the “thrash-out” 
phenomena caused by miss-prediction and to avoid un-
necessarily migrating pages. 
Sub-region Sampling: Monitoring all pages at all times to 
collect 8 history records, even for a specific hot region, is 
quite expensive and impractical in a cloud computing ap- 

2 The constants in our design (current and following sec.) are empirical 

values based on the analyses of all programs from SPECCPU 2006 and 
cloud computing workloads. Thus, we conclude that our approach may 
work well in many real cases. These values can be adjusted as neces-
sary in the conditions of extreme environment changes. 
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Fig.4. Stream vs. Non-stream (mcf) access pattern. 

 
Fig.5. HyMM in a nutshell (a case). 

plication due to its large memory footprint. To further 
reduce the overhead, we use a technique we call sub-
region sampling. The technique has two steps: first, it 
divides the pages in a hot region into sub-regions; second, 
it uses a single page as the sample for each sub-region. As 
the first step, for a specific hot region, we scan and check 
all of the memory pages’ dirty_bits to identify whether 
they are modified (write) or not (read). After a few inter-
vals (three 2-second intervals by default), adjacent pages 
that show the same read/write dominance are grouped 
into sub-regions. Then, one page in each sub-region is 
randomly selected as a representative, and only this rep-
resentative is monitored in the next 5 monitoring inter-
vals. Doing so is reasonable, as our comprehensive exper-
iments show that for a specific write or read region, 98.8% 
pages exhibit similar features on average. Discussed be-
fore, we collect 8 history records for these sampled pages 
to predict the future patterns for a specific sub-region 
according to the dominant patterns. 

3.4 Detecting Pages with Stream Access Patterns 

Besides the hotness and write/read patterns, monitoring 
TLB misses can easily identify stream-like memory usage. 
Fig.4 shows a clear streaming pattern in the address space 
of STREAM [13]. The left sub-figure shows the TLB miss 
frequency is 1 per page per half-second interval for the 
touched pages (indicated by black bars). With the time 
passing from left to right, the memory access exhibits a 
stable progression over the entire memory space from 
bottom to top. STREAM shows highly regular TLB miss 
counts for its pages, incurring an identical number of TLB 
miss per page.  Fig.4 further shows that the distribution of 
the TLB miss count for pages in a range of specific 
memory addresses in box graph. The variation is minimal 
for STREAM (i.e., IQR3 [11,12] is 0.28 on average). In con-
trast, for mcf, which does not have streaming access, the 
TLB miss count has considerable variations among the 
pages in a range of specific memory address (i.e., IQR is 
24.4 on average), showing large variation in TLB miss 
counts. HyMM can easily meature and identify stream-
like access pattern in practice.  

 
Fig.6. Sampling overhead comparisons. 

3.5 Using HyMM on Hybrid Memory Systems 

Fig.5 shows a case for the time overview of the HyMM 
design, including monitoring TLB misses, tracking the 
access_bit and dirty_bit in PTE. On hybrid memory system, 
application’s data is initially stored in NVM. At first, 
HyMM monitors TLB misses for 5 seconds to discern hot 
and cold page regions, and then enables dirty_bit usage to 
identify the write/read patterns using sub-region sam-
pling (eight 2-second sampling intervals by default). So 
far, in Fig.5, this period analyzes NVM data, selects pages 
whose TLB miss count is 10 or higher, and sorts them in 
the MigrateQue for later migration. We call it the prepara-
tion period. It lasts for 21 seconds (s). Note that to reduce 
the monitoring overhead in practice, HyMM stops moni-
toring for a specific page once its miss count reaches an 
upper bound (i.e., 200). The parameters can be tuned ac-
cordingly. An action period is launched immediately af-
ter the preparation and run in the next 20s. In this period, 
the queued pages are moved to DRAM and then tracked 
only by monitoring the access_bit with a low frequency. 
The alternation of preparation and action then repeats. 
These parameters can be adjusted2. 

We conduct experiments to show the advantages of 
HyMM using Memcached (4GB) and Aerospike (6GB); 
our experimental results are shown in Fig.6. While differ-
ent approaches generate similar page hotness results (at 
most 3.9% and 5.2% differences for Memcached and 
Aerospike, respectively), the average sampling overhead 
of HyMM is around 1/5th that of the approaches that only 
use TLB misses counting [26,37] and 1/10th that of ap-
proaches that only use access_bit sampling [53,87]. Addi-
tionally, HyMM not only identifies the hot and cold pages 
with a lower sampling overhead but also can capture the 
read and write patterns at runtime via monitoring the 
dirty_bit. HyMM works well in practice as it introduces 
new monitoring methods while incorporating the ad-
vantages of previous methods. HyMM samples a small 
number of pages for these applications and the amortized 
overhead is quite low. More details are in Sec. 6.1. 

4 Memos 

4.1 Overview of Memos 

This section details the Memos design. In Fig.7, with 
HyMM, Memos obtains the workloads’ memory access 
patterns and then the Full Hierarchy Memory Manage-
ment Framework leverages the information to schedule 
memory resources across the entire memory hierarchy 
(Sec.4.2). The framework has two key components: a two-
tiered Buddy System that manages the NVM and DRAM 
in a hybrid way (Sec.5.1), and a highly efficient data mi-
gration engine (Sec.5.2).  The physical address is split into 

3 The interquartile range (IQR) is a measure of variability in Box graph. 

Large IQR means large variation and unstable [11]. 



6 IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS 

 

 

 

 

 

 
 
 
Fig.7. Overview of Memos (w/HyMM as a component). 
 
DRAM and NVM segments. Moreover, memory pages 
will be migrated across channels when their patterns 
change. 

4.2 Full Hierarchy Management Framework 
Fundamental Framework: We construct the memory 
management framework by leveraging the Page-Coloring 
approach [48,51,52,53]. As the address mapping illustrat-
ed in Fig.8, for a 4K-size page (0~11 bits denote the offset 
within the page) on a typical 64-bit architecture, bit 32 is 
used as the channel-bit. Therefore, by selecting a physical 
page with a specified value (0 or 1) at bit 32, we can con-
trol which channel, and consequently which memory 
segment (DRAM or NVM) to accommodate the page. For 
cache resource, on our experimental platform, each 
unique combination of cache index bit values (bits 
15,16,17,18 in the page frame denote cache sets index, and 
also some rows in a memory bank, as shown in Fig.1), or 
cache-set color, dictates a slab (1/16 of the total 8MB LLC 
capacity) of LLC resource. Thus, we can adjust cache re-
source allocation by leveraging these bits. Moreover, for 
the memory bank resource in both NVM and DRAM 
channels, we monitor the bank utilization and enable the 
bank scheduling by using the bank index bits (bits 
21,20,14,13 and 12 in Fig.8). Usually, bits 21,20 are used as 
a combination to uniquely dictate a group of 8 banks 
(called a bank-group color), and Memos can assign addi-
tional bank groups by using more than one bank-group 
colors. Leveraging these bits that indicate the different 
type of memory resources, Memos forms previously un-
used full hierarchy allocation approaches. 

Channel Allocation: At the channel level, Memos se-
lects a memory medium to map pages to according to 
their online write/read features and aims to maximize the 
overall bandwidth provided by both the DRAM and 
NVM channels used together.  Memos  attempts  to  place 

 

the hot pages (i.e., freq-touched/stream-like) onto DRAM, 
especially for those with WD features. WD pages are 
more likely to be moved to DRAM than RD pages, as on 
NVM the longer write operation latency incurs a more 
significant performance loss. Cold pages are kept in NVM 
to save energy and reserve DRAM space for stream-like, 
hot, and WD pages. At runtime, Memos monitors pages 
using HyMM and migrates them when the access pattern 
changes. 
     Bandwidth Scheduling: Memos’ design goal is to 
maximize the combined bandwidth for both DRAM and 
NVM, which aims to avoid a significant decrease in NVM 
bandwidth that cannot be compensated by an increase in 
DRAM bandwidth. During an action period (as shown in 
Fig.5), Memos migrates up to 10,000 hot pages from the 
MigrateQue to DRAM and then monitors the resulting 
bandwidth on both the DRAM and NVM channels. When 
the DRAM bandwidth improvement is less than that 
gained in the previous epoch, Memos will reduce the 
number of the migrated pages (i.e., 1/5th that of the pre-
vious migration by default) at the next period. And, if 
Memos finds the NVM bandwidth decreases drastically 
more than the DRAM bandwidth increases, then it will 
stop migrating pages to DRAM for the upcoming period; 
moving more pages will not improve bandwidth utiliza-
tion due to DRAM bandwidth is near saturated, but can 
further decrease NVM bandwidth, hurting the overall 
bandwidth. Finally, Memos may migrate some pages 
back to NVM to compensate for the NVM loss. 
     Cache and Bank Associated Allocation: Besides, 
Memos tries to hierarchically place data blocks according 
to the memory hierarchy details, thus avoiding memory con-

flicts and improving the memory utilization. 

From the view of Memos, LLC is partitioned into 16 
slabs (in Fig.8) by using LLC index bits (e.g., 15, 16, 17, 18 
bits), and each slab denotes a group of LLC sets (i.e., 512 
cache sets on our platform). Memos uses Algorithm_1 to 
record the utilization of each cache slab and memory 
bank in Cache/Bank_Frequency_Table. Each table is an 
array of integer-unsigned long pairs representing the id 
of bank or cache slab and the corresponding number of 
hot pages mapped to it, i.e., <Bank/Cache_Slab ID, Freq.>. 
The tables are in OS kernel. Our system has at most 16 
cache slabs and 160 banks, thus the memory occupation is 
at most 2.1MB. The allocation process works as fellow: 

Fig.8. A case for address mapping of MCHA on a typical i7 machine [21,53] and four typical cases of Memos’s working process. 
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     (1) By default, the LLC slabs are further divided into 
three segments, i.e., the slabs for stream-like, rarely-
touched and the freq-touched pages. The design tries to 
map all of the stream-like pages into a small specific re-
served slab (i.e., stream-like slab 0 in Fig.8), isolating them 
so the LLC can help to avoid interfering with other data, 
especially the data from the NVM channel.  Meanwhile, 
all those rarely-touched pages are mapped together into 
another reserved slab (slab 15), as usually these pages 
consume very small cache capacity. Moreover, seen from 
Fig.8, larger LLC quotas, from slab 1~14, are used for freq-
touched pages (i.e., freq-touched slabs).  
     (2) A PFN encodes both cache and bank access. Thus 
through iteratively recording pages’ accessing times by 
monitoring TLB misses and access_bit in Algorithm_1, 
Memos records the corresponding cache slab and bank 
utilization in Cache/Bank_Freq_Table. As demonstrated 
in Fig.8, a lower frequency value means a lower utiliza-
tion. When moving pages between NVM and DRAM, 
Memos will place them to the underutilized banks (i.e., 
these lower frequency banks in Bank_Freq_Table) for bet-
ter bank parallelism, thus avoiding bank conflicts caused 
by blind mapping. Simultaneously, by placing pages to 
the rows whose index bits are associated with the low 
utilization cache slabs in Cache_Freq_Table, data can be 
loaded to these underutilized cache slabs. Doing so, as 
demonstrated in Fig.1, Memos can help to improve both 
cache and memory bank utilization while reducing the 
memory conflicts in those “hot” regions at memory hier-
archy.  
     (3) If the associated memory regions (i.e., rows) in tar-
get bank in (2) are not free, Memos will try to select other 
underutilized slabs in Cache_Freq_Table accordingly, 
whose associated rows are still in this bank. If the 
memory banks in the DRAM channel cannot provide suf-
ficient capacity, Memos will just migrate N =
 ∑ ∑ (𝐹𝑀𝐶𝑖𝑗/𝑃𝑎𝑔𝑒_𝑆𝑖𝑧𝑒)𝑅𝑂𝑊_𝐺𝑅𝑂𝑈𝑃−1

𝑗=0
𝐵𝐴𝑁𝐾−1
𝑖=0  pages with 

higher migration priority (i.e., higher number of TLB 
misses) in MigrateQue, where FMCij denotes free memory 
capacity (FMC) of rows in jth row_group  (corresponds to 
jth cache slab) within ith DRAM bank.  

(4) Memos will enlarge the reserved slabs if the associ- 

 
Fig.9. Overall performance throughput improvement. 

ated memory capacity cannot meet the special require-
ments (e.g., stream-like application with large memory 
footprint).  
     (5) As shown in action period in Fig.5, the hot pages in 
DRAM are also tracked by monitoring the access_bit with 
the low sampling frequency. When Memos finds the pag-
es are cold (access_bit is 0 in 2 consecutive 2-second inter-
vals), it will migrate them to NVM, saving more space for 
hot pages. This is the Memos’ reclamation process for the 
DRAM. 

4.3 Cases on Overall System Working Process 

To better understand the overall scheduling process, Fig.8 
shows several typical cases. As illustrated in case①, pages 
that exhibit stream-like patterns are mapped into cache 
slab 0. Meanwhile, they are distributed into different 
memory banks for better bank-level parallelism (i.e., 
15~18 bits, denoting both the row and cache set index, are 
with the value of 0). Similar things happen in cache slab 
15, which is reserved for rarely-touched pages, especially 
for these pages with relatively lower access frequency 
that are kept in the NVM side (case②). For NVM, ideal 
bank-level parallelism can hide the expensive access la-
tency (sometimes raised by memory interferences), as 
NVM systems are able to have more memory banks than 
DRAM. In case③, Memos migrates a hot/WD page from 
NVM to DRAM across channels. It first selects the coldest 
memory bank (for higher bank parallelism and overall 
utilization) and then maps the page to the row associated 
with the cache slab with the lowest utilization (slab 9 in 
Cache_Freq_Table). Moreover, the NVM channel can also 
provide bandwidth. As shown in case④, data blocks from 
RD pages can be loaded to cache directly through the 
NVM channel. Note that for the rest of the RD pages with 
the stream-like feature in NVM, Memos will also map 
them to the reserved slab 0. Even for a specific channel, 
hot pages are migrated from highly utilized banks to low-
er ones to balance the overall utilization. On average, our 
full hierarchy memory management framework outper-
forms newly proposed policies by around 10.0% (details 
are in Section 4.4). 

4.4 Effectiveness on Throughput and QoS on Real 
System 

This section has 3-steps experiments on the platform with 
an Intel i7-series/2.8Ghz CPU to show the effectiveness of 
our above-mentioned new approach. We employ 10 
workloads, and each of them consists of 4~8 applications 
from SPECCPU 2006 (refer to appendix; at least one ap-
plication has the stream-like pattern). We use DRAM in 
both of the DRAM and NVM channels. In Step-1, we only 
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enable cache partitioning [48] in the LLC to migrate the 
memory interferences. In Step-2, we enable cache and 
bank associated mapping but without the memory chan-
nel-level consideration [53], i.e., mapping memory pages 
evenly across two channels even for the pages with highly 
aggressive stream-like patterns. Step-1 and Step-2 are 
with dual-channel interleaving scheme. In Step-3, i.e., 
Memos, we enable our newly proposed full hierarchical 
approach, which not only has the cache and bank associ-
ated mapping but also schedules memory pages across 
channels, such as confining pages with stream-like pat-
terns into a specific channel for reducing the bandwidth 
contention for the NVM channel. The general baseline is 
the unmodified Linux kernel. Fig.9 illustrates the experi-
mental results. Step-3 outperforms Step-2 by 7.2% (up to 
11.0%) on average. Step-3 achieves an average 23% per-
formance gain over the baseline. Moreover, Step-2 outper-
forms the Step-1, as it can improve the memory utilization 
at LLC and bank simultaneously as discussed in Sec.4.2 
and Fig.8. Note that, with the channel-interleaving 
scheme, neither of the approaches of cache and bank as-
sociated mapping (Step-2) and the cache-only partitioning 
(Step-1) can constrain pages with aggressive accesses into 
a specific channel, thus causing all-to-all memory inter-
ferences in all channels. Our new approach can reduce 
these interferences. As the program behavior varies, the 
magnitude of the improvement also varies, from the low-
est 17.0% to the highest 28.1%. The improvement is 
strongly correlated with the number of stream accesses. 

Moreover, our results show that bank imbalance is re-
duced by 60.1~69.9%, and the cache misses are reduced 
by 27.4% on average across both channels, with a 
42.1~50.0% reduction on the NVM channel. These benefits 
also contribute to the improvement of QoS (indicated by 
Max Slowdown [53,65,66]) by 23.6% on average. Take 
workload 9 as an example. Memos improves QoS by 
34.1%, while the other two schemes (i.e., Step-1, Step-2) 
improve QoS by 13.2% and 19.4%. Memos outperforms 
them by 20.9% and 14.7%, respectively. For the band-
width on MCHA, as mentioned before, Memos does not 
merely maximize the DRAM bandwidth while hurting 
the bandwidth in other channels. In our experiments, 
Memos tries to maximize the combined bandwidth of all 
memory channels, thus improving the overall bandwidth 
on MCHA by 24.6% on average. To sum up, the experi-
ment shows our memory framework is effective. 

5 Kernel Modules and Emulation Platform 

5.1 Two-tiered Buddy System in Memos 

To support Memos’ full hierarchy memory framework, 
we are the first in designing a two-tiered Buddy System 
by extending Page-Coloring to reorganize the free pages 
in Linux kernel with the channel, bank and cache bits in 
PFN simultaneously. With the channel bit, we reorganize 
all physical pages into two sub-buddies logically, one for 
pages in NVM and the other for pages in DRAM. In each 
sub-buddy, we can still use other index bits (cache/bank 
bits) to allocate resources. By doing so, Memos tags re-
sources according to hierarchy details, material features, 
and therefore can efficiently allocate them accordingly. 

Nine bits (21,20,18~12 bits) in PFN form a set of 29=512 
colors. Memos uses Algorithm_2 which works as a hash-
ing index to allocate pages corresponding to any cache 
slabs, channel and NVM/DRAM banks with O(1) time 
consumption, even for the cloud applications. The prima-
ry memory allocation interface in the kernel is al-
loc_resource (int channel_id, int cache_slab, int bank_id), 
which is used to obtain a group of memory resources. By 
adding resource control parameters into Task_Struct (de-
notes Process in Linux kernel), users can leverage this in-
terface to map the applications’ data heap according to 
their requirements.  

 

5.2 Data Migration Engine 

To improve the efficiency of data migration, we design 
and implement a new engine, which combines CPU and 
DMA-based page migration. First, using the page copy 
primitive in OS kernel, we implement a lock involved 
CPU-based page migration approach. This approach 
locks the pages and the process cannot modify them dur-
ing migration, therefore ensuring the data consistency. 
CPU migration performs better than DMA, as DMA fre-
quency is lower than that of CPU and its initialization 
time is non-negligible. Upon migrating 10,000 pages, CPU 
approach takes 43ms, whereas DMA takes 57ms in our 
experiments. Most importantly, lock involved CPU mi-
gration is effective in the cases when WD pages are 
moved from NVM to DRAM, as we need to ensure data 
are consistent with migration. 

We devise a DMA-based lockless migration approach 
to migrate pages from DRAM to NVM. As mentioned 
before, since cold pages are likely to be evicted from 
DRAM, it is not a good choice to waste the CPU time on 
migrating these inactive pages. Instead, Memos uses a 
lockless DMA approach: before migration, a page’s 
dirty_bit is set to 0, and not locked when migrated 
through the DMA channel. We check whether these pages 
are modified during migration by checking the dirty_bit in 
PTE after the migration finishes. We then create the new 
PTEs for the successfully migrated pages, whose dirty_bit 
are 0 (i.e., not modified during migration), and discard 
the dirty pages. The modified pages are still left on 
DRAM and will be considered for future reclaim (migra-
tion), and the freed pages on DRAM are added to a free 
list. This is a cost-effective approach in cloud environ-
ments, as DMA migration is in parallel with CPU opera-
tions and will not occupy CPU for migrating cold data. 
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Fig.10. Amount of cold data, hot pages w/ WD and RD patterns in 
several typical applications in SPECCPU 2006. 

TABLE 1. PARAMETERS OF NVM, DRAM AND CACHE [34,69, 
54,56] 

 
 
 
 
 
 
 
     Compared with the original DMA approach that needs 
to lock migrated pages, the lockless approach does not 
block the processes so that they can use these data during 
the migration, hence the overall system performance will 
not be negatively affected. Moreover, it is possible that 
these modified pages are the active pages, which should 
not be evicted incorrectly. In such cases, the lockless ap-
proach offers a chance to correct the eviction decision, as 
these modified pages are discarded and not be evicted 
out of DRAM. In practice, Memos uses CPU with on-
demand approach to migrate pages from NVM to DRAM, 
and adaptively enables lockless DMA migration to evict 
cold pages from DRAM. We show two of the interfaces. 
The interface migrate_cpu (struct page * src, stuct page * des) 
is evoked when Memos moves a specific number of hot 
and WD pages to DRAM. In contrast, with Scatter-Gather 
[8] mode, after the DMA initiation, DMA migration ap-
proach iteratively uses the interface 
dma_memcpy_pg_to_pg (dma_channel, oldpage, newpage) to 
move pages. Thus it can efficiently move a large number 
of pages with discrete addresses. 

5.3 Emulation of MCHA and Methodology 

All of the above-mentioned components are implemented 
in the Linux kernel. Besides, we emulate MCHA using the 
channel-partitioning approach [52,66] to divide the 
memory address space into DRAM and NVM segments 
on a server with an Intel i7-860/2.8Ghz CPU and DDR3 
memory. Memos runs on it. In the experiment, we use the  

 
Fig.11. Amount of cold data, hot pages w/ WD and RD patterns in 
cloud computing cases4 w/ 1.6GB~24GB footprints. 

PIN tool to collect workloads' traces after the warm-up 
period and feed them into an x86 multicore hybrid 
memory simulator. The simulator's framework is based 
on the open source hybrid memory simulator [20,58]. We 
enhanced this simulator’s cache with Dinero IV [2] and its 
memory with DRAMsim2 [1] including the NVM config-
uration. Moreover, we record the overheads from the OS 
at runtime such as the PTE updates and page migrations 
(e.g., CPU uses 16800 cy per 4K page migration using 
CPU copy and 4200 cy for DMA migration) as well as the 
sampling overheads using HyMM, and parameterize 
them into this simulator. Our simulator has memory con-
trollers for DRAM and NVM, respectively. Each control-
ler is with FR-FCFS scheduling policy, 64-bit channel, 64-
entry read request queue and 32-entry write buffer. Table 
1 shows more parameters, and memory bank information 
can be found in Sec.6.2. 

6 Evaluations 

6.1 Effectiveness of Memos on Real System 

We firstly test Memos by using SPEC applications. In our 
experiments, we initially map applications to NVM, 
whose physical address space starts from 4GB (i.e., NVM 
channel bit=1 in Fig.8), as NVM might be used as storage 
in practice. We report the breakdown of WD/RD hot and 
cold pages for astar, lbm, libquantum and multi-app case 
that includes several applications run together. Generally, 
Memos moves hot pages to the DRAM channel, while 
keeping cold data in the NVM channel. Taking astar in 
Fig.10 as an example, in the DRAM channel, the footprint 
of WD pages increases stably at the beginning, indicating 
that hot pages with WD features are migrated to DRAM 
continuously.   Meanwhile,  the  number  of  WD  and  RD  
 
4 Memcached (twitter dataset, with random requests, 195K/s random 

requests [4]), Redis (redis-benchmark [10] with default 50 Clients, 290K/s 
requests with Zipfian distributions), Aerospike (C Client benchmarks [15] 
with 145K/s operations), and MySQLslap (default setup w/ 40 connec-
tions. These workloads are widely used in big data and cloud cases [38]. 
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Fig.12. Execution time normalized to 32GB DRAM. Lower is better; 
x-y means MCHA with xGB DRAM and yGB NVM. 

pages in the NVM channel shows a decreasing trend, il-
lustrating these frequently used pages are migrated into 
DRAM while pages with relative low memory access fre-
quency (cold pages) are left in NVM.  
    The curve often fluctuates, shown in astar, as it may 
exhibit diverse and dynamically changing memory access 
behaviors. For these write-heavy workloads, such as lbm 
in Fig.10, Memos identifies these WD pages, and migrates 
them into DRAM channel, and thus we can see most of its 
memory pages are in DRAM channel. The libquantum 
figure shows a similar trend. However, libquantum has 
many cold pages, and therefore Memos keeps them in 
NVM channel. The bottom-right subfigure shows the 
metrics for a multi-programmed workload including sev-
eral SPEC applications. We observe that Memos can han-
dle the diverse memory access patterns well by segregat-
ing pages into different memory sub-systems based on 
memory access frequency and write/read patterns.  
     Fig.11 shows that Memos works well for these cloud 
computing applications. For these applications, only a 
small number of pages are hot, and the hot/cold status of 
these pages changes frequently. During a preparation 
period, HyMM can detect these hot pages with overheads 
of 0.15s, 0.72s 1.18s and 0.79s for Memcached, 
MySQLslap, Redis, and Aerospike, respectively. For ex-
ample, there are overall 245 sub-regions in Aerospike 
(each has 1299 pages on average). HyMM only monitors 
0.08% of the pages out of the 1299*245 pages, accounting 
for only 0.02% of the pages in its 6GB memory space. In 
contrast, just tracking the access/dirty_bit is not cost-
effective. It takes 3~6s and is still less accurate when iden-
tifying the access frequency and write/read patterns than 
HyMM, because monitoring has to periodically walk the 
page table for these applications’ whole memory spaces 
with several GB to 24GB. 

6.2 Overall Performance on Emulation Platform 

To show the advantages of using NVM, employing Mem-
cached, we conduct a set of experiments by putting 
5.0%~20.0% of the data into main memory and leaving the 
rest of them in the disk, emulating the cases when the 
main DRAM cannot accommodate the entire working set. 
The total data size of Memcached is 10GB in our experi-
ments. Our experimental results show that 6.7%~16.7% 
requests suffer from the long latency of disk (~100X long-
er than accessing DRAM), leading to around 15.0% 
throughput lost on average. The long latency disk access-
es hurt users’ experience. In comparison, all data can fit 
into the NVM due to its high density and low power, and 
they are considerably faster than disk accesses (~20X). 

Fig.12 shows the normalized execution time of the typi- 

 
Fig.13. Performance breakdown. In Case 1, memory pages are ran-
domly mapped between DRAM and NVM; In Case 2, memory pages 
are mapped using previous sampling and migration approaches 
[57,87]5; Case 3 uses Memos. Lower is better, indicating more com-
puting time. 

cal configurations across diverse benchmarks. On average, 
relative to the baseline 32GB DRAM system, the systems 
with all NVM perform worse due to NVM’s longer latency. 
Moreover, in the hybrid DRAM-NVM cases, if the memory 
pages are randomly mapped between memories, the NVM 
latency is also an un-negligible factor and leading to lower 
overall performance. In contrast, in the cases where 4GB 
DRAM is used as a buffer for NVM (similar to [71]), we get 
nearly DRAM-level performance, as most of the hot pages 
are moved to DRAM at runtime by hardware. This ap-
proach has around 4% higher execution time than all 
DRAM cases due to the overhead of hardware sampling 
and data migration. Memos provides near or even better 
performance on MCHA than system with all DRAM 
(around 5% benefits, on average). This is because: 1) our 
experimental results show that on average 83.2% of hot 
pages with write patterns are migrated to DRAM at 
runtime, therefore the overall latency of the hybrid 
memory system is approximately the same as the DRAM-
only system; 2) Memos can use the NVM channel to pro-
vide data to the CPU, thus having a higher overall band-
width than only using DRAM; 3) the full hierarchy mecha-
nism in Memos can reduce the memory interferences 
across the entire memory hierarchy, thus reducing the av-
erage memory access time; 4) HyMM and data migration 
engine have low overheads.   

Moreover, we test the scalability of Memos. In our ex-
periments, we use NVM with the capacity from 32GB to 
512GB, and the number of bank increases from 8 to 128 
(4GB/bank). We find Memos scale well and the overall per-
formance is even better with larger NVM capacity, as it can 
have more memory banks work in parallelism. 
     Performance Breakdown: Fig.13 shows the performance 
breakdown of Memos’ runtime across several typical cloud 
workloads. The runtime includes memory accesses time, 
sampling, page migration overhead and computing time. 
The most time-consuming part is memory access. Without 
any optimizations, data are randomly mapped between 
DRAM and NVM (case 1). Due to NVM’s longer latency, 
the overall time costs of memory accesses vary between 
40.3% (Redis with fewer memory accesses) and 76.9% 
(Aerospike). Prior efforts [57,87] conduct a page-level sam- 
 
5 We implement a baseline system (case 2) that absorbs the core ideas 

in related OS-level work [57,87]. [57] heavily relies on the PTE walkers, 
and the clock-hand algorithm (its Fig.6) for placing pages is complicated 
in practice. And, [57] is w/o details on memory arch-level optimization and 
doesn’t consider the migration method and overheads. [87] samples 
PTEs in a jumping approach, but it doesn’t provide the WD info., and it is 
not accurate for the poor locality cases in cloud environments. 
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pling and move the hot/WD pages to DRAM, thus reduc-
ing the memory access latency (Case 2) 5. However, due to 
the high sampling and page migration overheads, especial-
ly for the cloud workloads, the overall performance im-
provement is limited. In the case of Memcached and Redis, 
the overall performance degrades because the sampling 
and page migration overheads offset the benefits. 

Mentioned in Sec.3, Memos’ sampling overhead is less 
than 1/10 of that of prior efforts, and the migration over-
head is roughly reduced by more than half due to using 
DMA evicting cold pages (Sec.5). More importantly, illus-
trated in Fig.13, the full hierarchy memory mechanism fur-
ther reduces the memory latency (Sec.4), and thus the 
overall computing time is significantly improved by 
around 20%. 
TABLE 2. 128GB NVM’S LIFETIME (YRS) W/ AND W/O MEMOS. 

Bench/Policies/ 
Time (years) 

Rand 
Map 

Memos w/ 
MCHA 

Memcached 0.50 12.2 

mcf 0.27 9.3 Aerospike 0.43 10.1 
hmm 3.6 15.8 Redis 0.52 13.4 

Hmm,xal,mcf 0.24 9.1 Mysqlslap 1.44 15.6 

6.3 Details on Energy, Lifetime and Migration Over-
head 

Energy: We use Micron System Power Calculator [19]. For 
NVM system, we use the values of read-power, write-power 
and idle-power of NVM relative to DRAM. Memos with 
MCHA (4GB DRAM and 32/128GB NVM) saved 29% and 
82.5% energy on memory systems compared to 32GB and 
128GB all DRAM, respectively. The saving energy is mainly 
from the near zero refresh operation on NVM. 
     NVM Lifetime Improvements: For lifetime calcula-
tion, we model the NVM with the cell write endurance of 
107 in Table 1. The NVM is operated at 64 bytes blocks. 
Also, we emulate the NVM that uses an effective write 
leveling scheme (e.g., Start-Gap [70]), thus the overall 
NVM manages to achieve an overall lifetime which is 95% 
of the average NVM cell lifetime. Experimental results 
(using the model in [71]) show that Memos on MCHA can 
improve the NVM life by up to 34X (mcf) against the pol-
icy that randomly maps memory pages between DRAM 
and NVM, as Memos moves 83.2% of Hot and WD pages 
out of NVM, on average. Details are in Table 2. Besides 
SPEC applications, NVM can also have longer lifetime in 
the cloud computing workloads. 
     Data Migration Overhead: The migration only hap-
pens in the 20s action period in each 40s interval (in 
Fig.5), and the amortized overhead is low. Moreover, our 
lockless DMA migration engine can share the burden for 
CPU. For example, in case of Aerospike, Memos needs to 
evict 3376 cold pages from DRAM to NVM when it runs 
to 40th second. With our DMA-based lockless migration 
approach, 98.6% of them are migrated via DMA and thus 
saving CPU time for migration. 1.4% of them are modi-
fied (be active again) during the migration, and therefore 
our approach correctly keeps them in DRAM as discussed 
in Sec.5.2. 

7 Related Work and Discussions 

(1) New Memory Systems. Many studies design the new 
memory architecture [25,32,34,46,71,88], as well as typical 

studies in [27,42,56,72,82,86] optimize the memory controller 
logic, buffer organization, write operations, and row-buffer 
locality for NVM performance and security. Further work 
studies the memory management and task allocation accord-
ingly [36,64,74,75,77], and even for big data and virtualiza-
tion environments [41,44,89]. For high reliability and availa-
bility, latest studies redesign systems (e.g., databases) for 
platforms that use NVM [24,59,85] and end client devices 
[43]. The approach in [44] extracts OS-level information 
about an application’s memory usage to avoid page migra-
tions on hybrid memory systems. The work in [71] is a start-
ing point to address NVM’s challenges for main memory 
systems by using DRAM as a buffer of NVM. This approach 
benefits the overall system performance, NVM lifetime, and 
reduces the write traffic. [33] uses NVM in GPU architecture. 
Memos is an orthogonal design with these studies, and it is 
cost-effective on the platforms with the horizontally orga-
nized hybrid DRAM and NVM memories (e.g., Lenovo’s 
ThinkSystem SD650 servers [18] has 3D XPoint DIMM at the 
same level with DDR DIMM at memory hierarchy). (2) 
NVM Allocator. The work in [7] provides an open source 
NVM allocator for both persistent and volatile usage. 
SSDAlloc [29] provides an API to users for using SSDs on 
hybrid memory systems. [76] describes a file-only principle 
for NVM management, having a constant time memory op-
eration that is independent of size. Our work is complemen-
tary to these efforts. Memos tries to maximize the memory 
utilization across the entire hybrid memory hierarchy, while 
still being transparent to users and applications. (3) Page-
Coloring. Many previous studies [48,51,53] use cache/bank-
indexing bits in physical address mapping scheme to parti-
tion cache, banks and channels for performance. Our work 
differs in the involved address bits, including not only the 
cache and bank bits, but also the channel bits simultaneous-
ly. However, as our platform only has 1 channel bit, this 
could be a limitation in our experiments. If a platform has 
more channel bits, Memos could be extended to support 
such cases by organizing the free pages to multi-tiered. (4) 
Monitoring Memory Access Patterns. Previous work 
[35,40,62,74] conduct online profiling by leveraging hard-
ware performance counters. Recent efforts also design the 
OS-level memory page behavior monitoring approaches by 
referencing TLB misses [26] and access_bit [80]. HyMM in-
cludes the advantages of monitoring the access/dirty_bit and 
TLB misses, and can obtain the memory hierarchy utilization 
on the fly at the OS level on commodity systems. Specifical-
ly, HyMM can detect page-level reads/writes and stream-
like memory patterns, which are critical to consider in a hy-
brid memory environment. (5) Page Migration on Hybrid 
Memory Systems. [73] designs migration queues for DRAM 
and NVM. [31] proposes a concurrent migration approach 
that can migrate multiple pages efficiently. In [50], memif 
redefines the DMA engine configuration to improve migra-
tion performance. In contrast, Memos’ migration engine 
enhances DMA with a lockless approach and adaptively 
enables the CPU and lockless DMA enhancements accord-
ingly. (6) Huge Page. HyMM supports huge page sampling. 
Huge pages allow Memos to use NVMs, but the resulting 
fragmentation is a challenge. The work in [67] skips hybrid 
page blocks during compaction and [47] proposes asynchro-
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nous allocation to create contiguous memory spaces. Our 
future work will try to optimize Memos using these latest 
huge page policies. (7) Wire Delays. Due to the page limit, 
we only used average cache delay for all slices for which the 
results showed performance improvements over the base-
line. However, the results could be further improved using 
adaptive NUCA designs [30,39]. For example, we could 
place hot sets into cache slices close to the cores and place 
infrequently accessed data into slices far away from the 
cores. (8) Mis-classifications and Rectification in HyMM. If 
the applications change dynamically and change the 
memory footprint, causing the hot/cold classification become 
outdated, Memos will re-sampling and rectify the misclassi-
fications in next loop and enable migration accordingly. For 
instance, the above-mentioned “very hot” pages that cannot 
be found by monitoring TLB misses in section 3.2 could be 
detected and reclassified in the next sampling, as the 
memory pattern changes. The similar approach is also men-
tioned in [26]. (9) Memos and the Environments. We use an 
Intel i7-860 CPU as an example in our experiments, as its 
address mapping can be leveraged [51~54]. This CPU sup-
ports adjusting its address mapping policy to the one with 
fewer overlapped bits that index both cache sets and DRAM 
banks by modifying the configurations in BIOS, i.e., more 
bits (15~18 bit) only index the cache sets. In this paper, we 
use such an address mapping, as we want to show the re-
sults without many uncertain factors, such as reducing the 
bandwidth and the number of available memory banks 
brought by using overlapped bits [48,53,54]. And, we also do 
not consider the I/O [60,61] and network issues [90] in cur-
rent design. On a multi-socket platform, Memos could be 
extended to support by organizing the free pages to tiers 
according to the number of sockets. And, we would try to 
test Memos in virtualized environments with more re-
sources in future work. 

8 Conclusions 

This paper designs Memos for hybrid memory manage-
ment. It includes HyMM for capturing the online memory 
utilization for workloads with large memory footprints 
within low overhead; Full hierarchy memory framework to 
schedule the memory resources across the entire memory 
hierarchy according to memory patterns and NVM/DRAM’s 
features; and a hybrid page migration mechanism, which 
combines a lockless DMA engine and CPU-based migration 
approach. Our experimental results show that Memos works 
well on the platform with the hybrid DRAM-NVM memory 
system. Memos can be deployed on systems equipped with 
Fast-Slow memories potentially. 
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Appendix: The workloads’ information is listed as below. As 

mentioned in our paper, each workload has at least one libquan-
tum, which provides stream-like memory pattern.  

Workload1: omnetpp, libquantum, mcf, Xalan 

Workload2: omnetpp, libquantum*2, lbm, astar 

Workload3: bzip2, libquantum*2, soplex, Xalan 

Workload4: libquantum*3, mcf, soplex, astar 

Workload5: libquantum*2, cactusADM, tonto, mcf, bzip2 
Workload6: libquantum*3, gobmk, gcc, deal2, soplex 

Workload7: libquantum*2, lbm, h264ref, namd 

Workload8: omnetppp, libquantum*3, sjeng, leslie3d 

Workload9: soplex, libquantum*3, gcc, bzip2, Xalan 

Workload10: omnetpp, libquantum*4, mcf, soplex, astar 
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